Binomial Theorem And Its Simple Applications Question 4

Question: What are the values of k if the term independent of x in the expansion of $ {{( \sqrt{x}+\frac{k}{x^{2}} )}^{10}} $ is 405-

Options:

A) $ \pm 3 $

B) $ \pm 6 $

C) $ \pm 5 $

D) $ \pm 4 $

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] Given expansion is $ {{( \sqrt{x}+\frac{k}{x^{2}} )}^{10}} $

$ {{(r+1)} _{th}}term,{T _{r+1}}={{,}^{10}}C _{r}{{(\sqrt{x})}^{10-r}}{{( \frac{k}{x^{2}} )}^{r}} $

$ \Rightarrow {T _{r+1}}={{,}^{10}}C _{r}{x^{5-r/2}}.{{(k)}^{r}}.{x^{-2r}} $

$ \therefore {T _{r+1}}={{,}^{10}}C _{r}{x^{(10-5r)/2}}{{(k)}^{r}} $

Since, $ {T _{r+1}} $ is independent of x

$ \therefore ,\frac{10-5r}{2}=0\Rightarrow r=2\therefore ,405={{,}^{10}}C_2{{(k)}^{2}} $

$ 405=45\times k^{2}\Rightarrow k^{2}=9\Rightarrow k=\pm 3 $



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index