Binomial Theorem And Its Simple Applications Question 41

Question: The coefficient of $ {x^{-7}} $ in the expansion of $ {{[ ax-\frac{1}{bx^{2}} ]}^{11}} $ will be:

Options:

A) $ \frac{462}{b^{5}}a^{6} $

B) $ \frac{462a^{5}}{b^{6}} $

C) $ \frac{-462a^{5}}{b^{6}} $

D) $ \frac{-462a^{6}}{b^{5}} $

Show Answer

Answer:

Correct Answer: B

Solution:

Suppose $ {x^{-7}} $ occurs in $ {{(r+1)}^{th}} $ term. We have $ {T_{r+1}}={{,}^{n}}C_{r},{x^{n-r}},a^{r} $ in $ {{(x+a)}^{n}} $ . In the given question, $ n=11,x=x,,a=\frac{-1}{bx^{2}} $

$ \therefore ,{T_{r+1}}={{,}^{11}}C_{r}{{(ax)}^{11-r}}{{( \frac{-1}{bx^{2}} )}^{r}} $

$ ={{,}^{11}}C_{r}{a^{11-r}},{b^{-r}}{x^{11-3r}}{{(-1)}^{r}} $ This term contains $ x{{-}^{7}} $ if $ 11-3r=-7\Rightarrow r=6 $ Therefore, coefficient of $ {x^{-7}} $ is $ ^{11}C_6{{(a)}^{5}}{{( \frac{-1}{b} )}^{6}}=\frac{462}{b^{2}}a^{5} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें