Binomial Theorem And Its Simple Applications Question 43

Question: $ \frac{1}{2}x^{2}+\frac{2}{3}x^{3}+\frac{3}{4}x^{4}+\frac{4}{5}x^{5}+ $ …………….. is

Options:

A) $ \frac{x}{1+x}+\log (1+x) $

B) $ \frac{x}{1-x}+\log (1+x) $

C) $ -\frac{x}{1-x}+\log (1+x) $

D) $ \frac{x}{1-x}+\log (1-x) $

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] $ \frac{1}{2}x^{2}+\frac{2}{3}x^{3}+\frac{3}{4}x^{4}+\frac{4}{5}x^{5}+….. $

$ =( 1-\frac{1}{2} )x^{2}+( 1-\frac{1}{3} )x^{3}+( 1-\frac{1}{4} )x^{4}+ $

$ ( 1-\frac{1}{5} )x^{5}+… $

$ =(x^{2}+x^{3}+x^{4}+x^{5}+……)+ $

$ ( -\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\frac{x^{5}}{5}…… ) $

$ =(x+x^{2}+x^{3}+…)+( -\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\frac{x^{5}}{5}…… ) $

$ =\frac{x}{1-x}+{\log_{e}}(1-x) $