Binomial Theorem And Its Simple Applications Question 44

Question: The coefficient of $ x^{n} $ in the expansion of $ {{(1-9x+20x^{2})}^{-1}} $ is

Options:

A) $ 5^{n}-4^{n} $

B) $ {5^{n+1}}-{4^{n+1}} $

C) $ {5^{n-1}}-{4^{n-1}} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] $ {{(1-9x+20x^{2})}^{-1}}={{[(1-4x)(1-5x)]}^{-1}} $

$ =\frac{1}{x}[ \frac{(1-4x)-(1-5x)}{(1-4x).(1-5x)} ]=\frac{1}{x}[{{(1-5x)}^{-1}}-{{(1-4x)}^{-1}}] $

$ =\frac{1}{5}[(5-4)x+(5^{2}-4^{2})x^{2}+(5^{3}-4^{3})x^{3} $

$ +……+(5^{n}-4^{n})x^{n}+……] $

$ \therefore $ coeff. of $ x^{n}={5^{n+1}}-{4^{n+1}} $