Binomial Theorem And Its Simple Applications Question 48

Question: $ \frac{C_0}{1}+\frac{C_2}{3}+\frac{C_4}{5}+\frac{C_6}{7}+….= $

Options:

A) $ \frac{{2^{n+1}}}{n+1} $

B) $ \frac{{2^{n+1}}-1}{n+1} $

C) $ \frac{2^{n}}{n+1} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Putting the value of $ C_0,C_2C_4……, $ we get $ =1+\frac{n(n-1)}{3.2!}+\frac{n(n-1)(n-2)(n-3)}{5.4!}+….. $

$ =\frac{1}{n+1} $

$ [ (n+1)+\frac{(n+1)n(n-1)}{3!}+\frac{(n+1)n(n-1)(n-2)(n-3)}{5!}+.. ] $ put $ n+1=N $

$ =\frac{1}{N}[ N+\frac{N(N-1)(N-2)}{3!}+\frac{N(N-1)(N-2)(N-3)(N-4)}{5!}+.. ] $

$ =\frac{1}{N}{ ^{N}C_1+{{,}^{N}}C_3+{{,}^{N}}C_5+….. } $

$ =\frac{1}{N}{ {2^{N-1}} }=\frac{2^{n}}{n+1}.{ \because ,N=n+1 } $