Binomial Theorem And Its Simple Applications Question 49

Question: If x is so small that $ x^{3} $ and higher powers of x may be neglected, then $ \frac{{{(1+x)}^{\frac{3}{2}}}-{{( 1+\frac{1}{2}x )}^{3}}}{{{(1-x)}^{\frac{1}{2}}}} $ may be approximated as

Options:

A) $ 1-\frac{3}{8}x^{2} $

B) $ 3x+\frac{3}{8}x^{2} $

C) $ -\frac{3}{8}x^{2} $

D) $ \frac{x}{2}-\frac{3}{8}x^{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] $ \because x^{3} $ and higher powers of x may be neglected
    $ \therefore ,\frac{{{(1+x)}^{\frac{3}{2}}}-{{( 1+\frac{x}{2} )}^{3}}}{( 1-{x^{\frac{1}{2}}} )} $

$ ={{(1-x)}^{\frac{-1}{2}}}[ ( 1+\frac{3}{2}x+\frac{\frac{3}{2}.\frac{1}{2}}{2!}x^{2} )-( 1+\frac{3x}{2}+\frac{3.2}{2!}\frac{x^{2}}{4} ) ] $

$ =[ 1+\frac{x}{2}+\frac{\frac{1}{2}.\frac{3}{2}}{2!}x^{2} ][ \frac{-3}{8}x^{2} ]=\frac{-3}{8}x^{2} $ (as $ x^{3} $ and higher powers of x can be neglected)