Binomial Theorem And Its Simple Applications Question 50

Question: The coefficients of three successive terms in the expansion of $ {{(1+x)}^{n}} $ are 165, 330 and 462 respectively, then the value of n will be

[UPSEAT 1999]

Options:

A) 11

B) 10

C) 12

D) 8

Show Answer

Answer:

Correct Answer: A

Solution:

  • Let the coefficient of three consecutive terms i.e. $ {{(r+1)}^{th}},{{(r+2)}^{th}},,{{(r+3)}^{th}} $ in expansion of $ {{(1+x)}^{n}} $ are 165,330 and 462 respectively then, coefficient of $ {{(r+1)}^{th}} $ term $ ={}^{n}C_{r}=165 $ Coefficient of (r + 2)th term $ ={}^{n}{C_{r+1}}=330 $ and Coefficient of (r + 3)th term $ ={}^{n}{C_{r+2}}=462 $ \ $ \frac{{}^{n}{C_{r+1}}}{{}^{n}C_{r}}=\frac{n-r}{r+1}=2 $ or $ n-r=2(r+1) $ or $ r=\frac{1}{3}(n-2) $ and $ \frac{{}^{n}{C_{r+2}}}{{}^{n}{C_{r+1}}}=\frac{n-r-1}{r+2}=\frac{231}{165} $ or $ 165(n-r-1)=231(r+2) $ or $ 165n-627=396r $ or $ 165n-627=396\times \frac{1}{3}\times (n-2) $ or $ 165n-627=132(n-2) $ or n = 11.


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें