Binomial Theorem And Its Simple Applications Question 57

Question: If $ f(x)=1-x+x^{2}-x^{3}+…-x^{15}+x^{16}-x^{17} $ then the coefficient of $ x^{2} $ in f(x-1) is

Options:

A) 826

B) 816

C) 822

D) none of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] $ f(x)=1-x+x^{2}-x^{3}+…-x^{15}+x^{16}-x^{17}=\frac{1-x^{18}}{1+x} $

$ \Rightarrow f(x-1)=\frac{1-{{(x-1)}^{18}}}{x} $ Therefore, required coefficient of $ x^{2} $ is equal to coefficient of $ x^{3} $ in $ 1-{{(x-1)}^{18,}} $ which is given by $ ^{18}C_3=816 $ .