Binomial Theorem And Its Simple Applications Question 75

Question: If $ n\in N $ and $ n>1, $ then

Options:

A) $ n!>{{( \frac{n+1}{2} )}^{n}} $

B) $ n!\ge {{( \frac{n+1}{2} )}^{n}} $

C) $ n!<{{( \frac{n+1}{2} )}^{n}} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] when n =2 then $ {{( \frac{n+1}{2} )}^{n}}=\frac{9}{4} $

$ \Rightarrow n!<{{( \frac{n+1}{2} )}^{n}} $
When $ n=3, $ then $ n!=6,{{( \frac{n+1}{2} )}^{n}}=8 $

$ \Rightarrow n!<{{( \frac{n+1}{2} )}^{n}} $
When $ n=4, $ then $ n!=24. $

$ {{( \frac{n+1}{2} )}^{n}}=\frac{625}{16}\Rightarrow n!<{{( \frac{n+1}{2} )}^{n}} $

$ \therefore $ It is seen that $ n!<{{( \frac{n+1}{2} )}^{n}} $