Binomial Theorem And Its Simple Applications Question 9

Question: If $ \frac{e^{x}}{1-x}=B_0+B_1x+B_2x^{2}+…+B_{n}x^{n} $ then $ B_{n}-{B_{n-1}} $ is

Options:

A) $ \frac{1}{n!}-\frac{1}{(n-1)!} $

B) $ \frac{1}{n!} $

C) $ \frac{1}{(n-1)!} $

D) $ \frac{1}{n!}+\frac{1}{(n-1)!} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] We have $ (1-x)(B_0+B_1x+B_2x^{2}+….) $

$ …..+{B_{n-1}}{x^{n-1}}+B_{n}x^{n}+…) $

$ =e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+….+\frac{x^{n}}{n!}+…….(1) $

Hence equating the coefficients of $ x^{n} $ on both sides of (1) we get $ B_{n}-{B_{n-1}}=\frac{1}{n!}. $