Binomial Theorem And Its Simple Applications Question 97

Question: For given series: $ 1^{2}+2\times 2^{2}+3^{2}+2\times 4^{2}+5^{2}+2\times 6^{2}+…, $ If $ S_{n} $ is the sum of n terms, then

Options:

A) $ S_{n}=\frac{n{{(n+1)}^{2}}}{2}, $ If n is even

B) $ S_{n}=\frac{n^{2}(n+1)}{2}, $ If n is odd

C) Both and are true

D) Both and are false

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Let $ P(n):S_{n} $

$ = \begin{cases} \frac{n{{(n+1)}^{2}}}{2},,whenniseven \\ \frac{n^{2}(n+1)}{2},whennisodd \\ \end{cases} . $

Also, note that any term $ T_{n} $ of the series is given by

$ T_{n}= \begin{cases} n^{2},ifnisodd \\ 2n^{2},,ifniseven \\ \end{cases} . $
We observe that P(1) is true, since $ P(1):S_1=1^{2}=1=\frac{1.2}{2}=\frac{1^{2}.(1+1)}{2} $
Assume that P (K) is true for some natural number k, i.e Case I: When k is odd, then $ k+1 $ is even. We have, $ P(k+1):{S_{k+1}}=1^{2}+2\times 2^{2}+…+k^{2}+2\times {{(k+1)}^{2}} $

$ =\frac{k^{2}(k+1)}{2}+2\times {{(k+1)}^{2}} $

$ =\frac{(k+1)}{2}[k^{2}+4(k+1)]=\frac{k+1}{2}[k^{2}+4k+4] $

$ =\frac{k+1}{2}{{(k+2)}^{2}}=(k+1)\frac{{{[(k+1)+1]}^{2}}}{2} $
So, $ P(k+1) $ is true, whenever P (k) is true. In the case when k is odd. Case II: When k is even, then k + 1 is odd Now, $ P(k+1):{S_{k+1}}=1^{2}+2\times 2^{2}+…+2.k^{2}+{{(k+1)}^{2}} $

$ =\frac{k{{(k+1)}^{2}}}{2}={{(k+1)}^{2}}=\frac{{{(k+1)}^{2}}((k+1)+1)}{2} $
Therefore, $ P(k+1) $ is true, whenever P (k) is true for the case when k is even. Thus, P (k+1) is true whenever P (k) is true for any natural number k.

Hence, P (n) true for all natural numbers. N.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें