Circle And System Of Circles Question 10

Question: The two circles which passes through $ (0,a) $ and $ (0,-a) $ and touch the line $ y=mx+c $ will intersect each other at right angle, if

Options:

A) $ a^{2}=c^{2}(2m+1) $

B) $ a^{2}=c^{2}(2+m^{2}) $

C) $ c^{2}=a^{2}(2+m^{2}) $

D) $ c^{2}=a^{2}(2m+1) $

Show Answer

Answer:

Correct Answer: C

Solution:

Equation of circles $ [x^{2}+(y-a)(y+a)]+\lambda x=0\Rightarrow x^{2}+y^{2}+\lambda x-a^{2}=0 $ and $ \sqrt{{{( \frac{\lambda }{2} )}^{2}}+a^{2}}=\frac{\frac{-m\lambda }{2}+c}{\sqrt{1+m^{2}}} $

$ \Rightarrow (1+m^{2})[ \frac{{{\lambda }^{2}}}{4}+a^{2} ]={{( \frac{m\lambda }{2}-c )}^{2}} $

$ \Rightarrow (1+m^{2})[ \frac{{{\lambda }^{2}}}{4}+a^{2} ]=\frac{m^{2}{{\lambda }^{2}}}{4}-mc\lambda +c^{2} $

$ \Rightarrow {{\lambda }^{2}}+4mc\lambda +4a^{2}(1+m^{2})-4c^{2}=0 $

$ \therefore $ $ {\lambda_1}{\lambda_2}=4[a^{2}(1+m^{2})-c^{2}]\Rightarrow g_1g_2=[a^{2}(1+m^{2})-c^{2}] $ and $ g_1g_2+f_1f_2=\frac{c_1+c_2}{2}\Rightarrow a^{2}(1+m^{2})-c^{2}=-a^{2} $

Hence $ c^{2}=a^{2}(2+m^{2}) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें