Circle And System Of Circles Question 106

Question: The locus of the centre of the circle which cuts off intercepts of length $ 2a $ and $ 2b $ from x-axis and y-axis respectively, is

Options:

A) $ x+y=a+b $

B) $ x^{2}+y^{2}=a^{2}+b^{2} $

C) $ x^{2}-y^{2}=a^{2}-b^{2} $

D) $ x^{2}+y^{2}=a^{2}-b^{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ 2\sqrt{g^{2}-c}=2a $ ………….(i) $ 2\sqrt{f^{2}-c}=2b $ ………….(ii) On squaring (i) and (ii) and then subtracting (ii) from (i), we get $ g^{2}-f^{2}=a^{2}-b^{2}. $

Hence the locus is $ x^{2}-y^{2}=a^{2}-b^{2} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें