Circle And System Of Circles Question 106

Question: The locus of the centre of the circle which cuts off intercepts of length $ 2a $ and $ 2b $ from x-axis and y-axis respectively, is

Options:

A) $ x+y=a+b $

B) $ x^{2}+y^{2}=a^{2}+b^{2} $

C) $ x^{2}-y^{2}=a^{2}-b^{2} $

D) $ x^{2}+y^{2}=a^{2}-b^{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ 2\sqrt{g^{2}-c}=2a $ ………….(i) $ 2\sqrt{f^{2}-c}=2b $ ………….(ii) On squaring (i) and (ii) and then subtracting (ii) from (i), we get $ g^{2}-f^{2}=a^{2}-b^{2}. $

Hence the locus is $ x^{2}-y^{2}=a^{2}-b^{2} $ .