Circle And System Of Circles Question 118

Question: The equation of the circle passing through the point $ (-1,\ -3) $ and touching the line $ 4x+3y-12=0 $ at the point (3, 0), is

Options:

A) $ x^{2}+y^{2}-2x+3y-3=0 $

B) $ x^{2}+y^{2}+2x-3y-5=0 $

C) $ 2x^{2}+2y^{2}-2x+5y-8=0 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let the equation be $ x^{2}+y^{2}+2gx+2fy+c=0 $ ………….(i) But it passes through $ (-1,\ -3) $ and (3, 0) therefore $ 10-2g-6f+c=0 $ ………….(ii) $ 9+6g+c=0 $ ………….(iii) Also centre is $ C(-g,\ -f) $ . Slope of tangents $ =-\frac{4}{3}\Rightarrow $ Slope of normal $ =\frac{3}{4} $

$ \Rightarrow \frac{f}{3+g}=\frac{3}{4}\Rightarrow 3g-4f+9=0 $ …..(iv) Now on

Solving (ii), (iii) and (iv), we get $ g=-1,\ f=\frac{3}{2} $ and $ c=-3 $ Therefore, the equation of circle is $ x^{2}+y^{2}-2x+3y-3=0 $ . Trick : The points (-1, -3) and (3, 0) must satisfy the equation of circle. Circle given in (a) satisfies both the points. Also check whether it touches the line $ 4x+3y-12=0 $ or not.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें