Circle And System Of Circles Question 12

Question: The angle between the tangents from $ (\alpha ,\beta ) $ to the circle $ x^{2}+y^{2}=a^{2} $ , is

Options:

A) $ {{\tan }^{-1}}( \frac{a}{\sqrt{{{\alpha }^{2}}+{{\beta }^{2}}-a^{2}}} ) $

B) $ {{\tan }^{-1}}( \frac{\sqrt{{{\alpha }^{2}}+{{\beta }^{2}}-a^{2}}}{a} ) $

C) $ 2{{\tan }^{-1}}( \frac{a}{\sqrt{{{\alpha }^{2}}+{{\beta }^{2}}-a^{2}}} ) $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \tan \frac{\theta }{2}=\frac{CT_1}{PT_1}=\frac{a}{\sqrt{{{\alpha }^{2}}+{{\beta }^{2}}-a^{2}}} $

$ \frac{\theta }{2}={{\tan }^{-1}}\frac{a}{\sqrt{{{\alpha }^{2}}+{{\beta }^{2}}-a^{2}}}\Rightarrow \theta =2{{\tan }^{-1}}\frac{a}{\sqrt{{{\alpha }^{2}}+{{\beta }^{2}}-a^{2}}} $ .