Circle And System Of Circles Question 13

Question: Equation of the pair of tangents drawn from the origin to the circle $ x^{2}+y^{2}+2gx+2fy+c=0 $ is

Options:

A) $ gx+fy+c(x^{2}+y^{2}) $

B) $ {{(gx+fy)}^{2}}=x^{2}+y^{2} $

C) $ {{(gx+fy)}^{2}}=c^{2}(x^{2}+y^{2}) $

D) $ {{(gx+fy)}^{2}}=c(x^{2}+y^{2}) $

Show Answer

Answer:

Correct Answer: D

Solution:

Equation of pair of tangents is $ SS_1=T^{2} $ , where $ T=xx_1+yy_1+g(x+x_1)+f(y+y_1)+c $

$ \Rightarrow c(x^{2}+y^{2}+2gx+2fy+c)={{(gx+fy+c)}^{2}} $

$ \Rightarrow c(x^{2}+y^{2})={{(gx+fy)}^{2}} $ .