Circle And System Of Circles Question 130

Question: The equation of the circle having centre $ (1,\ -2) $ and passing through the point of intersection of lines $ 3x+y=14 $ , $ 2x+5y=18 $ is

[MP PET 1990]

Options:

A) $ x^{2}+y^{2}-2x+4y-20=0 $

B) $ x^{2}+y^{2}-2x-4y-20=0 $

C) $ x^{2}+y^{2}+2x-4y-20=0 $

D) $ x^{2}+y^{2}+2x+4y-20=0 $

Show Answer

Answer:

Correct Answer: A

Solution:

The point of intersection of $ 3x+y-14=0 $ and $ 2x+5y-18=0 $ are $ x=\frac{-18+70}{15-2},\ y=\frac{-28+54}{13}\Rightarrow x=4,\ y=2 $ i.e., point is (4, 2).

Therefore radius is $ \sqrt{(9)+(16)}=5 $ and equation is $ x^{2}+y^{2}-2x+4y-20=0 $ .

Trick : The only circle is $ x^{2}+y^{2}-2x+4y-20=0 $ , whose centre is (1, -2­).