Circle And System Of Circles Question 150

Question: A circle is concentric with the circle $ x^{2}+y^{2}-6x+12y+15=0 $ and has area double of its area. The equation of the circle is

Options:

A) $ x^{2}+y^{2}-6x+12y-15=0 $

B) $ x^{2}+y^{2}-6x+12y+15=0 $

C) $ x^{2}+y^{2}-6x+12y+45=0 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Equation of circle concentric to given circle is $ x^{2}+y^{2}-6x+12y+k=0 $ …………. (i)

Radius of circle (i) $ =\sqrt{2} $ (radius of given circle)

$ \Rightarrow \sqrt{9+36-k}=\sqrt{2}\sqrt{9+36-15} $

$ \Rightarrow 45-k=60\Rightarrow k=-15 $

Hence the required equation of circle is $ x^{2}+y^{2}-6x+12y-15=0 $ .