Circle And System Of Circles Question 163

Question: The locus of the centres of the circles which touch externally the circles $ x^{2}+y^{2}=a^{2} $ and $ x^{2}+y^{2}=4ax $ , will be

Options:

A) $ 12x^{2}-4y^{2}-24ax+9a^{2}=0 $

B) $ 12x^{2}+4y^{2}-24ax+9a^{2}=0 $

C) $ 12x^{2}-4y^{2}+24ax+9a^{2}=0 $

D) $ 12x^{2}+4y^{2}+24ax+9a^{2}=0 $

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ C\equiv (h,\ k) $ , radius $ =r $ Co-ordinates of $ A\equiv [ \frac{ah}{a+r},\ \frac{ak}{a+r} ] $

Co-ordinates of $ B\equiv [ \frac{2ar+2ah}{2a+r},\ \frac{2ak}{2a+r} ] $

Putting co-ordinates of A and B in $ S_1,\ S_2 $ respectively and eliminating r, we get the locus $ 12x^{2}-4y^{2}-24ax+9a^{2}=0 $ .

Aliter: Since it touches $ x^{2}+y^{2}=a^{2} $ and $ x^{2}+y^{2}-4ax=0 $ , therefore $ r+a=\sqrt{h^{2}+k^{2}} $ ………….(i) $ r+2a=\sqrt{{{(h-2a)}^{2}}+k^{2}} $ ………….(ii)

From (i), putting the value of r in (ii), we get $ -a+\sqrt{h^{2}+k^{2}}+2a=\sqrt{{{(h-2a)}^{2}}+k^{2}} $

On simplification, we get the required locus.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें