Circle And System Of Circles Question 185

Question: If $ (\alpha ,\beta ) $ is the centre of a circle passing through the origin, then its equation is

[MP PET 1999]

Options:

A) $ x^{2}+y^{2}-\alpha x-\beta y=0 $

B) $ x^{2}+y^{2}+2\alpha x+2\beta y=0 $

C) $ x^{2}+y^{2}-2\alpha x-2\beta y=0 $

D) $ x^{2}+y^{2}+\alpha x+\beta y=0 $

Show Answer

Answer:

Correct Answer: C

Solution:

Radius = Distance from origin $ =\sqrt{{{\alpha }^{2}}+{{\beta }^{2}}} $

$ \therefore $ $ {{(x-\alpha )}^{2}}+{{(y-\beta )}^{2}}={{\alpha }^{2}}+{{\beta }^{2}} $

$ \Rightarrow x^{2}+y^{2}-2\alpha x-2\beta y=0 $ .