Circle And System Of Circles Question 187

Question: The equation of a circle passing through origin and co-axial to circles $ x^{2}+y^{2}=a^{2} $ and $ x^{2}+y^{2}+2ax=2a^{2}, $ is

Options:

A) $ x^{2}+y^{2}=1 $

B) $ x^{2}+y^{2}+2ax=0 $

C) $ x^{2}+y^{2}-2ax=0 $

D) $ x^{2}+y^{2}=2a^{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

Equation of the circle which passes through origin is $ x^{2}+y^{2}+2gx+2fy=0 $ .

Radical axis with both circles is $ 2gx+2fy+a^{2}=0 $ ………….(i) $ 2(g-a)x+2fy+2a^{2}=0 $ ………….(ii)

Also radical axis of the two circles is $ x=\frac{a}{2}\Rightarrow f=0 $

From (i) and (ii), we get $ \frac{2g}{2(g-a)}=\frac{1}{2}\Rightarrow g=-a $

Hence circle is $ x^{2}+y^{2}-2ax=0 $ .