Circle And System Of Circles Question 188

Question: The equation of the circle whose diameter lies on $ 2x+3y=3 $ and $ 16x-y=4 $ which passes through (4,6) is

[Kurukshetra CEE 1998]

Options:

A) $ 5(x^{2}+y^{2})-3x-8y=200 $

B) $ x^{2}+y^{2}-4x-8y=200 $

C) $ 5(x^{2}+y^{2})-4x=200 $

D) $ x^{2}+y^{2}=40 $

Show Answer

Answer:

Correct Answer: A

Solution:

Let point $ (x_1,\ y_1) $ on the diameter.
$ \Rightarrow 2x_1+3y_1=3 $ ………….(i) $ 16x_1-y_1=4 $ ………….(ii) On

Solving (i) and (ii), we get centre,

$ \Rightarrow x_1=\frac{3}{10},\ y_1=\frac{4}{5} $

$ \therefore $ Equation of circle, $ {{(x-x_1)}^{2}}+{{(y-y_1)}^{2}}=r^{2}\Rightarrow {{( x-\frac{3}{10} )}^{2}}+{{( y-\frac{4}{5} )}^{2}}=r^{2} $

$ \because $ Circle passes through (4, 6).

So, $ r^{2}={{( \frac{37}{10} )}^{2}}+{{( \frac{26}{5} )}^{2}}\Rightarrow r^{2}=\frac{4073}{100} $

$ \therefore $ Required equation of circle is $ {{( x-\frac{3}{10} )}^{2}}+{{( y-\frac{4}{5} )}^{2}}=\frac{4073}{100} $

$ \Rightarrow 5(x^{2}+y^{2})-3x-8y=200 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें