Circle And System Of Circles Question 191

Question: The length of common chord of the circles $ {{(x-a)}^{2}}+y^{2}=a^{2} $ and $ x^{2}+{{(y-b)}^{2}}=b^{2} $ is

[MP PET 1989]

Options:

A) $ 2\sqrt{a^{2}+b^{2}} $

B) $ \frac{ab}{\sqrt{a^{2}+b^{2}}} $

C) $ \frac{2ab}{\sqrt{a^{2}+b^{2}}} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Equation of common chord is $ ax-by=0 $ . Now length of common chord $ =2\sqrt{r_1^{2}-p_1^{2}}=2\sqrt{r_2^{2}-p_2^{2}} $ where $ r_1 $ and $ r_2 $ are radii of given circles and $ p_1,\ p_2 $ are the perpendicular distances from centres of circles to common chords.

Hence required length $ =2\sqrt{a^{2}-\frac{a^{4}}{a^{2}+b^{2}}}=\frac{2ab}{\sqrt{a^{2}+b^{2}}} $ .