Circle And System Of Circles Question 196

Question: The equation of circle with centre (1, 2) and tangent $ x+y-5=0 $ is

[MP PET 2001]

Options:

A) $ x^{2}+y^{2}+2x-4y+6=0 $

B) $ x^{2}+y^{2}-2x-4y+3=0 $

C) $ x^{2}+y^{2}-2x+4y+8=0 $

D) $ x^{2}+y^{2}-2x-4y+8=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \because $ Radius of circle = perpendicular distance of tangent from the centre of circle
$ \Rightarrow $ $ r=\frac{1+2-5}{\sqrt{1+1}}=\sqrt{2} $

Hence the equation of required circle is $ {{(x-1)}^{2}}+{{(y-2)}^{2}}={{(\sqrt{2})}^{2}} $

$ \Rightarrow ,x^{2}+y^{2}-2x-4y+3=0. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें