Circle And System Of Circles Question 197

Question: The equation of the circle passing through the point (-2, 4) and through the points of intersection of the circle $ x^{2}+y^{2}-2x-6y+6=0 $ and the line $ 3x+2y-5=0 $ , is

[RPET 1996]

Options:

A) $ x^{2}+y^{2}+2x-4y-4=0 $

B) $ x^{2}+y^{2}+4x-2y-4=0 $

C) $ x^{2}+y^{2}-3x-4y=0 $

D) $ x^{2}+y^{2}-4x-2y=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

Required equation of the circle, $ (x^{2}+y^{2}-2x-6y+6)+\lambda (3x+2y-5)=0 $

This circle passing through points $ (-2,\ 4) $ , therefore $ (4+16+4-24+6)+\lambda (-6+8-5)=0 $ ,
$ \therefore \ \lambda =2 $

$ \therefore \ (x^{2}+y^{2}-2x-6y+6)+2(3x+2y-5)=0 $

$ \Rightarrow x^{2}+y^{2}+4x-2y-4=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें