Circle And System Of Circles Question 203

Question: The centre of a circle is (2, -3) and the circumference is $ 10\pi $ . Then the equation of the circle is

[Kerala (Engg.) 2002]

Options:

A) $ x^{2}+y^{2}+4x+6y+12=0 $

B) $ x^{2}+y^{2}-4x+6y+12=0 $

C) $ x^{2}+y^{2}-4x+6y-12=0 $

D) $ x^{2}+y^{2}-4x-6y-12=0 $

Show Answer

Answer:

Correct Answer: C

Solution:

Centre (2, - 3) Circumference $ =10\pi , $

therefore $ 2\pi r=10\pi $

therefore $ r=5. $ From $ {{(x-h)}^{2}}+{{(y-k)}^{2}}=r^{2} $ , $ {{(x-2)}^{2}}+{{(y+3)}^{2}}=5^{2} $

therefore $ x^{2}+y^{2}-4x+6y+13=25 $

therefore $ x^{2}+y^{2}-4x+6y-12=0 $ , which is the required equation of the circle.