Circle And System Of Circles Question 228

Question: Four distinct points $ (2k,,3k),(1,0)(0,1) $ and $ (0,0) $ lie on a circle for

[DCE 2005]

Options:

A) $ ,k\in I $

B) $ k<0 $

C) $ 0<k<1 $

D) For two values of k

Show Answer

Answer:

Correct Answer: D

Solution:

General equation of circle is, $ x^{2}+y^{2}+2gx+2fy+c=0 $ It passes through (0,0), (1, 0) and (0, 1); \ $ c=0 $ Now $ 2g+1=0\Rightarrow g=-\frac{1}{2} $ and $ 2f+1=0\Rightarrow f=\frac{-1}{2} $

Hence equation of circle is $ x^{2}+y^{2}-x-y=0 $ Point $ (2k,3k) $ lies on the circle \ $ 4k^{2}+9k^{2}-5k=0 $

therefore $ 13k^{2}-5k=0 $

therefore $ k=0 $ or $ k=\frac{5}{13} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें