Circle And System Of Circles Question 228

Question: Four distinct points $ (2k,,3k),(1,0)(0,1) $ and $ (0,0) $ lie on a circle for

[DCE 2005]

Options:

A) $ ,k\in I $

B) $ k<0 $

C) $ 0<k<1 $

D) For two values of k

Show Answer

Answer:

Correct Answer: D

Solution:

General equation of circle is, $ x^{2}+y^{2}+2gx+2fy+c=0 $ It passes through (0,0), (1, 0) and (0, 1); \ $ c=0 $ Now $ 2g+1=0\Rightarrow g=-\frac{1}{2} $ and $ 2f+1=0\Rightarrow f=\frac{-1}{2} $

Hence equation of circle is $ x^{2}+y^{2}-x-y=0 $ Point $ (2k,3k) $ lies on the circle \ $ 4k^{2}+9k^{2}-5k=0 $

therefore $ 13k^{2}-5k=0 $

therefore $ k=0 $ or $ k=\frac{5}{13} $ .