Circle And System Of Circles Question 230

Question: A circle is drawn to cut a chord of length 2a units along X-axis and to touch the Y-axis. The locus of the centre of the circle is

[Kerala (Engg.) 2005]

Options:

A) $ x^{2}+y^{2}=a^{2} $

B) $ x^{2}-y^{2}=a^{2} $

C) $ x+y=a^{2} $

D) $ x^{2}-y^{2}=4a^{2} $

E) $ x^{2}+y^{2}=4a^{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

Since the perpendicular drawn from the center on a chord bisects the chord. $ NM=a $

$ OM=y $

$ {{(ON)}^{2}}={{(OM)}^{2}}+{{(MN)}^{2}} $

$ x^{2}=y^{2}+a^{2} $

$ x^{2}-y^{2}=a^{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें