Circle And System Of Circles Question 232

Question: The length of the common chord of the circles $ {{(x-a)}^{2}}+{{(y-b)}^{2}}=c^{2} $ and $ {{(x-b)}^{2}}+{{(y-a)}^{2}}=c^{2} $ , is

Options:

A) $ \sqrt{4c^{2}-2{{(a-b)}^{2}}} $

B) $ \sqrt{4c^{2}+2{{(a-b)}^{2}}} $

C) $ \sqrt{4c^{2}-2{{(a+b)}^{2}}} $

D) $ \sqrt{4c^{2}+2{{(a+b)}^{2}}} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ C_1(a,\ b),\ C_2(b,\ a),\ r_1=r_2=c $

$ \therefore $ $ C_1P=\frac{1}{2}\sqrt{a^{2}+b^{2}+a^{2}+b^{2}-4ab} $

Length of common chord $ =2{{[ c^{2}-\frac{1}{4}{ 2(a^{2}+b^{2})-4ab } ]}^{1/2}} $

$ =2{{( \frac{2c^{2}-a^{2}-b^{2}+2ab}{2} )}^{1/2}}=\sqrt{4c^{2}-2{{(a-b)}^{2}}} $ .