Circle And System Of Circles Question 233

Question: From any point on the circle $ x^{2}+y^{2}=a^{2} $ tangents are drawn to the circle $ x^{2}+y^{2}=a^{2}{{\sin }^{2}}\alpha $ , the angle between them is

[RPET 2002]

Options:

A) $ \frac{\alpha }{2} $

B) $ \alpha $

C) $ 2\alpha $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Let any point on the circle $ x^{2}+y^{2}=a^{2} $ be $ (a\cos t,a\sin t) $ and $ \angle ,OPQ=\theta $

Now; $ PQ= $ length of tangent from P on the circle $ x^{2}+y^{2}=a^{2}{{\sin }^{2}}\alpha $

$ \therefore $ $ PQ= $

$ \sqrt{a^{2}{{\cos }^{2}}t+a^{2}{{\sin }^{2}}t-a^{2}{{\sin }^{2}}\alpha } $

$ =a\cos \alpha $

$ OQ= $ Radius of the circle $ x^{2}+y^{2}=a^{2}{{\sin }^{2}}\alpha $

$ OQ= $

$ a\sin \alpha $ ,
$ \therefore $ $ \tan \theta =\frac{OQ}{PQ}=\tan \alpha \Rightarrow ,\theta =\alpha $

$ \therefore $ Angle between tangents $ =,\angle ,QPR=2\alpha . $