Circle And System Of Circles Question 233

From any point on the circle $ x^{2}+y^{2}=a^{2} $ tangents are drawn to the circle $ x^{2}+y^{2}=a^{2}\sin^{2}\alpha $ , the angle between them is

[RPET 2002]

Options:

A) $ \frac{\alpha }{2} $

B) $ \alpha $

C) $ 2\alpha $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Let any point on the circle $ x^{2}+y^{2}=a^{2} $ be $ (a\cos t,a\sin t) $ and $ \angle ,OPQ=\theta $

Now; $ PQ= $ length of tangent from P on the circle $ x^{2}+y^{2}=a^{2}{{\sin }^{2}}\theta $

$ \therefore $ $ PQ= $

$ \sqrt{a^{2}{{\cos }^{2}}t+a^{2}{{\sin }^{2}}t-a^{2}{{\sin }^{2}}\alpha } $

$ =a\cos \alpha $

$ OQ= $ Radius of the circle $ x^{2}+y^{2}=a^{2}{{\sin }^{2}}\theta $

$ OQ = $

$ a\sin \alpha $ ,
$ \therefore $ $ \tan \theta =\frac{OQ}{PQ}=\tan \alpha \Rightarrow ,\theta =\alpha $

$ \therefore $ Angle between tangents $ =,\angle ,QPR=2\alpha . $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें