Circle And System Of Circles Question 234

Question: The equation of the circle through the point of intersection of the circles $ x^{2}+y^{2}-8x-2y+7=0 $ , $ x^{2}+y^{2}-4x+10y+8=0 $ and (3, -3) is

Options:

A) $ 23x^{2}+23y^{2}-156x+38y+168=0 $

B) $ 23x^{2}+23y^{2}+156x+38y+168=0 $

C) $ x^{2}+y^{2}+156x+38y+168=0 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Equation of circle is $ (x^{2}+y^{2}-8x-2y+7)+\lambda (x^{2}+y^{2}-4x+10y+8)=0 $

Also point $ (3,\ -3) $ lies on the above equation.
$ \Rightarrow \lambda =\frac{7}{16} $

Hence required equation is $ 23x^{2}+23y^{2}-156x+38y+168=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें