Circle And System Of Circles Question 248

Question: The locus of centre of the circle which cuts the circles $ x^{2}+y^{2}+2g_1x+2f_1y+c_1=0 $ and $ x^{2}+y^{2}+2g_2x+2f_2y+c_2=0 $ orthogonally is

[Karnataka CET 1991]

Options:

A) An ellipse

B) The radical axis of the given circles

C) A conic

D) Another circle

Show Answer

Answer:

Correct Answer: B

Solution:

Let the circle be $ x^{2}+y^{2}+2gx+2fy+c=0 $ . This cuts the two given circles orthogonally, therefore $ 2(gg_1+ff_1)=c+c_1 $ ………….(i) and $ 2(gg_2+ff_2)=c+c_2 $ ………….(ii)

Subtracting (ii) from (i), we get

$ 2g(g_1-g_2)+2f(f_1-f_2)=c_1-c_2 $

So locus of $ (-g,\ -f) $ is $ -2x(g_1-g_2)-2y(f_1-f_2)=c_1-c_2 $ or $ 2x(g_1-g_2)+2y(f_1-f_2)+c_1-c_2=0 $ ,

which is the radical axis of the given circles.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें