Circle And System Of Circles Question 248

Question: The locus of centre of the circle which cuts the circles $ x^{2}+y^{2}+2g_1x+2f_1y+c_1=0 $ and $ x^{2}+y^{2}+2g_2x+2f_2y+c_2=0 $ orthogonally is

[Karnataka CET 1991]

Options:

A) An ellipse

B) The radical axis of the given circles

C) A conic

D) Another circle

Show Answer

Answer:

Correct Answer: B

Solution:

Let the circle be $ x^{2}+y^{2}+2gx+2fy+c=0 $ . This cuts the two given circles orthogonally, therefore $ 2(gg_1+ff_1)=c+c_1 $ ………….(i) and $ 2(gg_2+ff_2)=c+c_2 $ ………….(ii)

Subtracting (ii) from (i), we get

$ 2g(g_1-g_2)+2f(f_1-f_2)=c_1-c_2 $

So locus of $ (-g,\ -f) $ is $ -2x(g_1-g_2)-2y(f_1-f_2)=c_1-c_2 $ or $ 2x(g_1-g_2)+2y(f_1-f_2)+c_1-c_2=0 $ ,

which is the radical axis of the given circles.