Circle And System Of Circles Question 249

Question: A circle passes through the origin and has its centre on $ y=x $ . If it cuts $ x^{2}+y^{2}-4x-6y+10=0 $ orthogonally, then the equation of the circle is

[EAMCET 1994]

Options:

A) $ x^{2}+y^{2}-x-y=0 $

B) $ x^{2}+y^{2}-6x-4y=0 $

C) $ x^{2}+y^{2}-2x-2y=0 $

D) $ x^{2}+y^{2}+2x+2y=0 $

Show Answer

Answer:

Correct Answer: C

Solution:

Let the required circle be $ x^{2}+y^{2}+2gx+2fy+c=0 $ …………. (i)

This passes through (0, 0), therefore $ c=0 $ . The centre $ (-g,\ -f) $ of (i) lies on $ y=x $ ,

Hence $ g=f $ .

Since (i) cuts the circle $ x^{2}+y^{2}-4x-6y+10=0 $ orthogonally, therefore $ 2(-2g-3f)=c+10\Rightarrow -10g=10 $

$ (\because \ g=f\ and\ c=0) $

$ \Rightarrow g=f=-1 $

Hence the required circle is $ x^{2}+y^{2}-2x-2y=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें