Circle And System Of Circles Question 249

Question: A circle passes through the origin and has its centre on $ y=x $ . If it cuts $ x^{2}+y^{2}-4x-6y+10=0 $ orthogonally, then the equation of the circle is

[EAMCET 1994]

Options:

A) $ x^{2}+y^{2}-x-y=0 $

B) $ x^{2}+y^{2}-6x-4y=0 $

C) $ x^{2}+y^{2}-2x-2y=0 $

D) $ x^{2}+y^{2}+2x+2y=0 $

Show Answer

Answer:

Correct Answer: C

Solution:

Let the required circle be $ x^{2}+y^{2}+2gx+2fy+c=0 $ …………. (i)

This passes through (0, 0), therefore $ c=0 $ . The centre $ (-g,\ -f) $ of (i) lies on $ y=x $ ,

Hence $ g=f $ .

Since (i) cuts the circle $ x^{2}+y^{2}-4x-6y+10=0 $ orthogonally, therefore $ 2(-2g-3f)=c+10\Rightarrow -10g=10 $

$ (\because \ g=f\ and\ c=0) $

$ \Rightarrow g=f=-1 $

Hence the required circle is $ x^{2}+y^{2}-2x-2y=0 $ .