Circle And System Of Circles Question 257

Question: The line $ (x-a)\cos \alpha +(y-b) $ $ \sin \alpha =r $ will be a tangent to the circle $ {{(x-a)}^{2}}+{{(y-b)}^{2}}=r^{2} $

Options:

A) If $ \alpha =30^{o} $

B) If $ \alpha =60^{o} $

C) For all values of $ \alpha $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

According to the condition of tangency

$ r=\frac{a\cos \alpha +b\sin \alpha -(a\cos \alpha +b\sin \alpha )-r}{\sqrt{{{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha }} $

$ \Rightarrow r=|-r|\ \Rightarrow r=r $ . Therefore, it is a tangent to the circle for all values ofa.