Circle And System Of Circles Question 260

Question: The equation of a circle that intersects the circle $ x^{2}+y^{2}+14x+6y+2=0 $ orthogonally and whose centre is (0, 2) is

[MP PET 1998]

Options:

A) $ x^{2}+y^{2}-4y-6=0 $

B) $ x^{2}+y^{2}+4y-14=0 $

C) $ x^{2}+y^{2}+4y+14=0 $

D) $ x^{2}+y^{2}-4y-14=0 $

Show Answer

Answer:

Correct Answer: D

Solution:

In circle, $ x^{2}+y^{2}+14x+6y+2=0 $

$ g=7,\ f=3,\ c=2 $

Centre of circle $ (-g,\ -f)=(0,\ 2) $ , (Given) For orthogonally intersection, $ 2gg’+2ff’=c+c’ $

$ 0-12=2+c’\Rightarrow c’=-14 $

Put the values, in equation $ x^{2}+y^{2}+2g’x+2f’x+c’=0 $ .
$ \Rightarrow x^{2}+y^{2}+0-4y-14=0\Rightarrow x^{2}+y^{2}-4y-14=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें