Circle And System Of Circles Question 266

Question: The equation of the circle which passes through the intersection of $ x^{2}+y^{2}+13x-3y=0 $ and $ 2x^{2}+2y^{2}+4x-7y-25=0 $ and whose centre lies on $ 13x+30y=0 $ is

[DCE 2001]

Options:

A) $ x^{2}+y^{2}+30x-13y-25=0 $

B) $ 4x^{2}+4y^{2}+30x-13y-25=0 $

C) $ 2x^{2}+2y^{2}+30x-13y-25=0 $

D) $ x^{2}+y^{2}+30x-13y+25=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

The equation of required circle is $ S_1+\lambda S_2=0 $ .

therefore $ x^{2}(1+\lambda )+y^{2}(1+\lambda )+x(2+13\lambda )-y( \frac{7}{2}+3\lambda )-\frac{25}{2}=0 $ Centre = $ ( \frac{-(2+13\lambda )}{2},\frac{\frac{7}{2}+3\lambda }{2} ) $

$ \because $ Centre lies on $ 13x+30y=0 $

$ \Rightarrow $ $ -13( \frac{2+13\lambda }{2} )+30( \frac{\frac{7}{2}+3\lambda }{2} )=0 $

$ \Rightarrow , $ $ \lambda =1 $ .

Hence the equation of required circle is $ 4x^{2}+4y^{2}+30x-13y-25=0. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें