Circle And System Of Circles Question 268

Question: The equations of the tangents drawn from the origin to the circle $ x^{2}+y^{2}-2rx-2hy+h^{2}=0 $ are

[Roorkee 1989; IIT 1988; RPET 1996]

Options:

A) $ x=0,y=0 $

B) $ (h^{2}-r^{2})x-2rhy=0,x=0 $

C) $ y=0,x=4 $

D) $ (h^{2}-r^{2})x+2rhy=0,x=0 $

Show Answer

Answer:

Correct Answer: B

Solution:

The equation of tangents is $ SS_1=T^{2} $

$ \Rightarrow h^{2}(x^{2}+y^{2}-2rx-2hy+h^{2})={{(rx+hy-h^{2})}^{2}} $

$ \Rightarrow (h^{2}-r^{2})x^{2}-2rhxy=0\Rightarrow x{(h^{2}-r^{2})x-2rhy}=0 $

$ \Rightarrow x=0,\ (h^{2}-r^{2})x-2rhy=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें