Circle And System Of Circles Question 272

Question: The two circles $ x^{2}+y^{2}-2x+6y+6=0 $ and $ x^{2}+y^{2}-5x+6y+15=0 $

[Karnataka CET 2001]

Options:

A) Intersect

B) Are concentric

C) Touch internally

D) Touch externally

Show Answer

Answer:

Correct Answer: C

Solution:

Given, equations of the circles $ x^{2}+y^{2}-2x+6y+6 $ =0 …..(i) and $ x^{2}+y^{2}-5x+6y+15=0 $ …..(ii)

We know that the standard equation of a circle is $ x^{2}+y^{2}+2gx+2fy+c=0. $

Therefore for circle (i), $ g=-1;,f=3;,c=6; $ centre $ A=(1,,-3) $ and radius $ (r_1)=\sqrt{g^{2}+f^{2}-c}=\sqrt{1+9-6}=2 $ .

Similarly, for circle (ii), $ g=\frac{-5}{2};f=3;,c=15; $

Centre $ B\equiv ,( +\frac{5}{2},-3 ) $ and radius $ (r_2)=\sqrt{\frac{25}{4}+9-15}=\frac{1}{2} $

Therefore distance between A and B $ =\sqrt{{{( \frac{5}{2}-1 )}^{2}}+{{(-3+3)}^{2}}}=\frac{3}{2} $ and difference of radii $ (r_1-r_2)=2-\frac{1}{2}=\frac{3}{2}. $

Since distance between A and B is equal to $ r_1-r_2, $ therefore the circles touch each other internally.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें