Circle And System Of Circles Question 274

Question: The locus of the centre of circle which cuts the circles $ x^{2}+y^{2}+4x-6y+9=0 $ and $ x^{2}+y^{2}-4x+6y+4=0 $ orthogonally is

[UPSEAT 2001]

Options:

A) $ 12x+8y+5=0 $

B) $ 8x+12y+5=0 $

C) $ 8x-12y+5=0 $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Let the given circle be $ x^{2}+y^{2}+2hx+2ky+c=0 $ Since the circle cuts $ x^{2}+y^{2}+4x-6y+9=0 $ and $ x^{2}+y^{2}-4x+6y+4=0 $ orthogonally, we have $ 2h(2)+2k(-3)=c+9 $

$ \Rightarrow $ $ 4h-6k=c+9 $ …..(i) and $ 2h(-2)+2k(3),=c+4 $

$ \Rightarrow $ $ -4h+6k=c+4 $ …..(ii) From (i) and (ii); $ c+9=-,c-4 $

$ \Rightarrow $ $ 2c=-13 $ …..(iii) From (i), $ 8h-12k=2c+18 $

$ \Rightarrow $ $ 8h-12k=5 $ …..(iv) Centre of the given circle is $ (-,h,-,k) $ .

Hence locus of $ (-h,,-k) $ from (iv) we have, $ 8(-x)-12(-y)=5 $

$ \Rightarrow $ $ 8x-12y+5=0. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें