Circle And System Of Circles Question 277

Question: If the two circles $ 2x^{2}+2y^{2}-3x+6y+k=0 $ and $ x^{2}+y^{2}-4x+10y+16=0 $ cut orthogonally, then the value of k is

[Kerala (Engg.) 2002]

Options:

A) 41

B) 14

C) 4

D) 0

Show Answer

Answer:

Correct Answer: C

Solution:

Given circles are $ 2x^{2}+2y^{2}-3x+6y+k=0 $ or $ x^{2}+y^{2}-\frac{3}{2}x+3y+\frac{k}{2}=0 $ …..(i) and $ x^{2}+y^{2}-4x+10y+16=0 $ …..(ii)

Circle (i) and (ii) cut orthogonally, then $ 2g_1,g_2+2f_1f_2=c_1+c_2 $

$ 2( -\frac{3}{4} ),(-2)+2( \frac{3}{2} ),.,5=\frac{k}{2}+16 $

$ 3+15=\frac{k}{2}+16 $

therefore $ 18=\frac{k}{2}+16 $

therefore $ k=4. $