Circle And System Of Circles Question 291

Question: The points of intersection of circles $ x^{2}+y^{2}=2ax $ and $ x^{2}+y^{2}=2by $ are

[AMU 2000]

Options:

A) (0, 0), (a, b)

B) (0, 0), $ ( \frac{2ab^{2}}{a^{2}+b^{2}},\frac{2ba^{2}}{a^{2}+b^{2}} ) $

C) (0, 0), $ ( \frac{a^{2}+b^{2}}{a^{2}},\frac{a^{2}+b^{2}}{b^{2}} ) $

D) None of the above

Show Answer

Answer:

Correct Answer: B

Solution:

Given circles are $ x^{2}+y^{2}=2ax $ …………..(i) and $ x^{2}+y^{2}=2by $ …………..(ii) (i) - (ii)

therefore $ 0=2(ax-by) $

therefore $ y=\frac{a}{b}x $

From (i), $ x^{2}+\frac{a^{2}}{b^{2}}x^{2}=2ax $

therefore $ x{ ( 1+\frac{a^{2}}{b^{2}} )x-2a }=0 $

therefore $ x=0,\ \frac{2ab^{2}}{a^{2}+b^{2}} $

For $ x=0 $ , $ y=0 $ and for $ x=\frac{2ab^{2}}{a^{2}+b^{2}} $ , $ y=\frac{2a^{2}b}{a^{2}+b^{2}} $ \

The points of intersection are (0, 0) and $ ( \frac{2ab^{2}}{a^{2}+b^{2}},\ \frac{2a^{2}b}{a^{2}+b^{2}} ) $ .