Circle And System Of Circles Question 293

Question: The locus of midpoint of the chords of the circle $ x^{2}+y^{2}-2x-2y-2=0 $ which makes an angle of $ 120{}^\circ $ at the centre is

[MNR 1994]

Options:

A) $ x^{2}+y^{2}-2x-2y+1=0 $

B) $ x^{2}+y^{2}+x+y-1=0 $

C) $ x^{2}+y^{2}-2x-2y-1=0 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

The centre of given circle is (1, 1) and its radius is $ \sqrt{2} $ .

From the figure, if $ M(h,\ k) $ be the middle point of chord AB subtending an angle $ \frac{2\pi }{3} $ at C,

then $ \frac{CM}{AC}=\cos \frac{\pi }{3}=\frac{1}{2}\Rightarrow 4CM^{2}=AC^{2} $ or $ 4[{{(h-1)}^{2}}+{{(k-1)}^{2}}]=4\Rightarrow h^{2}+k^{2}-2h-2k+2=1 $

Hence the locus is $ x^{2}+y^{2}-2x-2y+1=0 $ .