Circle And System Of Circles Question 3

Question: The locus of the point of intersection of the tangents at the extremities of a chord of the circle $ x^{2}+y^{2}=a^{2} $ which touches the circle $ x^{2}+y^{2}=2ax $ is

Options:

A) $ y^{2}=a(a-2x) $

B) $ x^{2}=a(a-2y) $

C) $ x^{2}+y^{2}={{(y-a)}^{2}} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ T\equiv hx+ky-a^{2}=0 $

$ \Rightarrow a=\frac{ah-a^{2}}{\sqrt{h^{2}+k^{2}}} $

$ P(3,,4) $ .

therefore $ k^{2}=a(a-2h) $ \ The locus is $ y^{2}=a(a-2x) $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index