Circle And System Of Circles Question 301

Question: If the line $ lx+my=1 $ be a tangent to the circle $ x^{2}+y^{2}=a^{2} $ , then the locus of the point (l, m) is

[MNR 1978; RPET 1997]

Options:

A) A straight line

B) A Circle

C) A parabola

D) An ellipse

Show Answer

Answer:

Correct Answer: B

Solution:

If the line $ lx+my-1=0 $ touches the circle $ x^{2}+y^{2}=a^{2} $ , then applying the condition of tangency, we have $ \pm \frac{l.0+m.0-1}{\sqrt{l^{2}+m^{2}}}=a $

On squaring and simplifying, we get the required locus $ x^{2}+y^{2}=\frac{1}{a^{2}} $ .

Hence it is a circle.