Circle And System Of Circles Question 302

Question: The value of $ \lambda $ , for which the circle $ x^{2}+y^{2}+2\lambda x+6y+1=0 $ , intersects the circle $ x^{2}+y^{2}+4x+2y=0 $ orthogonally is

[MP PET 2004]

Options:

A) $ \frac{-5}{2} $

B) $ -1 $

C) $ \frac{-11}{8} $

D) $ \frac{-5}{4} $

Show Answer

Answer:

Correct Answer: D

Solution:

If two circles $ x^{2}+y^{2}+2g_1x+2f_1y+c_1=0 $ and $ 2(g_1g_2+f_1f_2)=c_1+c_2 $ intersect orthogonally then they must follow $ 2(g_1g_2+f_1f_2)=c_1+c_2 $ and $ g_1=\lambda ,,f_1=3,,c_1=1 $ and $ g_2=2,,f_2=1,,c_2=0 $

So, $ 2,(2\lambda +3)=1+0\Rightarrow 2\lambda +3=\frac{1}{2} $

$ \Rightarrow \lambda =\frac{-5}{4} $ .