Circle And System Of Circles Question 305

Question: The two circles $ x^{2}+y^{2}-2x+22y+5=0 $ and $ x^{2}+y^{2}+14x+6y+k=0 $ intersect orthogonally provided k is equal to

[Karnataka CET 2005]

Options:

A) 47

B) $ -47 $

C) 49

D) $ -49 $

Show Answer

Answer:

Correct Answer: A

Solution:

Given two circles $ x^{2}+y^{2}-2x+22y+5=0 $

$ x^{2}+y^{2}+14x+6y+k=0 $

The two circles cut orthogonally, if $ 2(g_1g_2+f_1f_2)=c_1+c_2 $ i.e., $ 2(-1.7+11.3)=5+k $

$ 2(-7+33)=5+k\Rightarrow 52-5=k\Rightarrow k=47 $ .