Circle And System Of Circles Question 315

Question: The point (2, 3) is a limiting point of a coaxial system of circles of which $ x^{2}+y^{2}=9 $ is a member. The co-ordinates of the other limiting point is given by

[MP PET 1993]

Options:

A) $ ( \frac{18}{13},\frac{27}{13} ) $

B) $ ( \frac{9}{13},\frac{6}{13} ) $

C) $ ( \frac{18}{13},-\frac{27}{13} ) $

D) $ ( -\frac{18}{13},-\frac{9}{13} ) $

Show Answer

Answer:

Correct Answer: A

Solution:

$ {{(x-2)}^{2}}+{{(y-3)}^{2}}=0 $ or $ (x^{2}+y^{2}-9)-4x-6y+22=0 $ or $ (x^{2}+y^{2}-9)-\lambda (2x+3y-11)=0 $ represents the family of co-axial circles.

$ C=( \lambda ,\ \frac{3\lambda }{2} )\text{ },\ r=\sqrt{{{\lambda }^{2}}+\frac{9{{\lambda }^{2}}}{4}-11\lambda +9} $ For limiting points $ r=0 $

$ \Rightarrow 13{{\lambda }^{2}}-44\lambda +36=0\Rightarrow \lambda =\frac{18}{13},\ 2 $

$ \therefore $ The limiting points are (2, 3) and $ [ \frac{18}{13},\ \frac{3}{2}( \frac{18}{13} ) ] $ or $ ( \frac{18}{13},\ \frac{27}{13} ) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें