Circle And System Of Circles Question 321

Question: The equations of the normals to the circle $ x^{2}+y^{2}-8x-2y+12=0 $ at the points whose ordinate is -1, will be

Options:

A) $ 2x-y-7=0,,2x+y-9=0 $

B) $ 2x+y+7=0,,2x+y+9=0 $

C) $ 2x+y-7=0,2x+y+9=0 $

D) $ 2x-y+7=0,,2x-y+9=0 $

Show Answer

Answer:

Correct Answer: A

Solution:

The abscissa of point is found by substituting the ordinates and

Solving for abscissa.
$ \Rightarrow x^{2}-8x+15=0 $

$ \Rightarrow x=\frac{8\pm \sqrt{64-60}}{2}=\frac{8\pm 2}{2}=5 $ or 3 i.e., points are $ (5,\ -1) $ and (3,-1). Normal is given by, $ \frac{x-5}{5-4}=\frac{y+1}{-1-1}\Rightarrow 2x+y-9=0 $ and $ \frac{x-3}{3-4}=\frac{y+1}{-1-1}\Rightarrow 2x-y-7=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें