Circle And System Of Circles Question 322
Question: If the ratio of the lengths of tangents drawn from the point $ (f,g) $ to the given circle $ x^{2}+y^{2}=6 $ and $ x^{2}+y^{2}+3x+3y=0 $ be 2 : 1, then
Options:
A) $ f^{2}+g^{2}+2g+2f+2=0 $
B) $ f^{2}+g^{2}+4g+4f+4=0 $
C) $ f^{2}+g^{2}+4g+4f+2=0 $
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
According to the condition, $ \frac{f^{2}+g^{2}-6}{f^{2}+g^{2}+3f+3g}=\frac{4}{1} $
$ \Rightarrow f^{2}+g^{2}+4f+4g+2=0 $ .