Circle And System Of Circles Question 327

Question: The equation of the circle having its centre on the line $ x+2y-3=0 $ and passing through the points of intersection of the circles $ x^{2}+y^{2}-2x-4y+1=0 $ and $ x^{2}+y^{2}-4x-2y+4=0 $ , is

[MNR 1992]

Options:

A) $ x^{2}+y^{2}-6x+7=0 $

B) $ x^{2}+y^{2}-3y+4=0 $

C) $ x^{2}+y^{2}-2x-2y+1=0 $

D) $ x^{2}+y^{2}+2x-4y+4=0 $

Show Answer

Answer:

Correct Answer: A

Solution:

Required circle will be $ S_1+\lambda S_2=0 $ , $ \lambda \ne -1 $ i.e., $ x^{2}+y^{2}-2x-4y+1+\lambda (x^{2}+y^{2}-4x-2y+4)=0 $

therefore $ x^{2}+y^{2}-2\frac{(1+2\lambda )}{1+\lambda }x-2\frac{(2+\lambda )}{1+\lambda }y+\frac{1+4\lambda }{1+\lambda }=0 $ Its centre $ ( \frac{1+2\lambda }{1+\lambda },\ \frac{2+\lambda }{1+\lambda } ) $ lies on $ x+2y-3=0 $ \ $ \frac{1+2\lambda }{1+\lambda }+2( \frac{2+\lambda }{1+\lambda } )-3=0 $

therefore $ \lambda =-2 $ . \ The circle is $ x^{2}+y^{2}-6x+7=0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें